Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38539563

RESUMEN

(1) Background: Although the incidence of glioblastoma (GB) has a peak in patients aged 75-84 years, no standard treatment regimen for elderly patients has been established so far. The goal of this study was to analyze the outcome of GB patients ≥ 65 years to detect predictors with relevant impacts on overall survival (OS) and progression-free survival (PFS). (2) Methods: Medical records referred to our institution from 2006 to 2020 were analyzed. Adult GB patients with clinical data, postoperative MRI data, and ≥1 follow-up investigation after surgical resection were included. The complete cohort was divided into a younger (<65) and an elderly group (≥65 years). Multiple factors regarding OS and PFS were scanned using univariate and multivariable regression with p < 0.05. (3) Results: 1004 patients were included with 322 (61.0%) male individuals in the younger and 267 (56.1%) males in the older cohort. The most common tumor localization was frontal in both groups. Gross total resection (GTR) was the most common surgical procedure in both groups, followed by subtotal resection (STR) (145; 27.5%) in the younger group, and biopsy (156; 32.8%) in the elderly group. Multivariate analyses detected that in the younger cohort, MGMT promoter methylation and GTR were predictors for a longer OS, while MGMT methylation, GTR, and hypofractionated radiation were significantly associated with a longer OS in the elderly group. (4) Conclusions: Elderly patients benefit from surgical resection of GB when they show MGMT promoter methylation, undergo GTR, and receive hypofractionated radiation. Furthermore, MGMT methylation seems to be associated with a longer PFS in elderly patients. Further investigations are required to confirm these findings, especially within prospective radiation therapy studies and molecular examinations.

2.
Oncol Lett ; 27(3): 125, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38333639

RESUMEN

Pituitary adenomas are one of the most common mass lesions of the brain and are associated with a reduced quality of life. While transnasal and transsphenoidal endoscopic approaches are considered to deliver similar recovery rates for sino-nasal health (SNH), the impact of radiological tumor growth patterns on SNH has not been evaluated. In the present study, the influence of radiological tumor growth on SNH was examined before and after endoscopic transsphenoidal tumor resection. Patient data were prospectively collected between August 1, 2016 and August 31, 2022. The Knosp and Hardy classifications were used to dichotomize pituitary adenoma lesions into low- and high-graded lesions. SNH was assessed shortly before surgery and at follow-up examinations 3-6 months after operation using the Sino-Nasal Outcome Test for Neurosurgery (SNOT-NC) questionnaire. Fully completed SNOT-NC questionnaires were collected before and after surgery from a total of 101 patients. Independent t-tests showed significantly higher rates of deterioration after surgery in patients with Knosp low-graded lesions compared with those with high-graded tumors for the SNOT-NC total score P=0.048, nasal discomfort P=0.034, sleep problems P=0.024 and visual impairment P=0.042. Pre- and post-operative comparisons for the Knosp low-graded tumor cohort showed an increase of nasal discomfort (P=0.004), while the Knosp high-graded tumor cohort reported decreased visual impairment (P=0.016) after surgery. Assessing the Hardy classification, increased nasal discomfort was reported in patients with high-graded infrasellar tumors after surgery (P=0.046). Growth characteristics of pituitary adenomas based on Knosp and Hardy classifications may influence SNH. Patients with less invasive lesions were revealed to be more prone to experiencing a decrease in SNH, which went beyond the assumed deterioration of 1-3 months. These findings indicate the importance of detailed information regarding SNH as part of every pre-operative patient briefing.

3.
iScience ; 27(1): 108596, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38174322

RESUMEN

Adaptive plasticity to the standard chemotherapeutic temozolomide (TMZ) leads to glioblastoma progression. Here, we examine early stages of this process in patient-derived cellular models, exposing the human lysine-specific demethylase 5B (KDM5B) as a prospective indicator for subclonal expansion. By integration of a reporter, we show its preferential activity in rare, stem-like ALDH1A1+ cells, immediately increasing expression upon TMZ exposure. Naive, genetically unmodified KDM5Bhigh cells phosphorylate AKT (pAKT) and act as slow-cycling persisters under TMZ. Knockdown of KDM5B reverses pAKT levels, simultaneously increasing PTEN expression and TMZ sensitivity. Pharmacological inhibition of PTEN rescues the effect. Interference with KDM5B subsequent to TMZ decreases cellular vitality, and clonal tracing with DNA barcoding demonstrates high individual levels of KDM5B to predict subclonal expansion already before TMZ exposure. Thus, KDM5Bhigh treatment-naive cells preferentially contribute to the dynamics of drug resistance under TMZ. These findings may serve as a cornerstone for future biomarker-assisted clinical trials.

4.
Neurooncol Adv ; 5(1): vdad105, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37811538

RESUMEN

Background: Glioblastoma is the most aggressive primary brain cancer with a poor prognosis. Despite numerous studies in the past 17 years, effective treatment options for glioblastoma remain limited. In this study, we aimed to identify and compare phase III clinical trials for glioblastoma in terms of efficacy and baseline characteristics. Methods: A systematic literature search was conducted using PubMed and ClinicalTrials.gov to identify phase III clinical trials for glioblastoma in adult patients. The target population included adult patients aged 18 years and above (younger cohort) and patients ≥60 years of age (elderly cohort). The search results were screened based on predefined inclusion criteria, and the included trials were analyzed for their study design, baseline characteristics, and survival results. Results: Eleven trials met the inclusion criteria in the younger cohort. Of these, three reported a statistically significant improvement in overall survival (OS), including the EORTC/NCIC study (NCT00006353), EF-14 (NCT00916409), and CeTeG (NCT01149109). Of the 11 trials, eight were open-label randomized trials, including all of the positive ones, while three negative trials employed treatment blinding and a placebo control. The baseline characteristics of the trials [such as extent of resection, age, gender, and O(6)-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status] did not significantly differ between positive and negative trials. Isocitrate dehydrogenase (IDH) mutation status was analyzed in only two trials, with a small percentage of IDH-mutated tumors in each. Additionally, three more trials in the elderly cohort showed a statistically significant improvement of OS, the NOA-08 trial, the ISRCTN81470623-trial by Malmström et al. and NCT00482677-trial by Perry et al. Their baseline characteristics and implications are also analyzed. Conclusion: This analysis of phase III clinical trials for glioblastoma conducted since 2005 showed that the majority of trials did not result in a significant improvement in OS. Among the trials included in this analysis, only the EORTC/NCIC, EF-14, and CeTeG studies demonstrated a positive OS outcome in the younger cohort.

5.
Front Immunol ; 14: 1173634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711611

RESUMEN

Introduction: Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results: In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion: NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.


Asunto(s)
Glioma , Heparina , Humanos , Heparina/farmacología , Inmunoterapia , Anticoagulantes , Heparina de Bajo-Peso-Molecular/farmacología , Heparina de Bajo-Peso-Molecular/uso terapéutico
6.
Cancers (Basel) ; 15(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627083

RESUMEN

In order to minimize the risk of infections during the COVID-19 pandemic, remote video consultations (VC) experienced an upswing in most medical fields. However, telemedicine in neuro-oncology comprises unique challenges and opportunities. So far, evidence-based insights to evaluate and potentially customize current concepts are scarce. To fill this gap, we analyzed >3700 neuro-oncological consultations, of which >300 were conducted as VC per patients' preference, in order to detect how both patient collectives distinguished from one another. Additionally, we examined patients' reasons, suitable/less suitable encounters, VC's benefits and disadvantages and future opportunities with an anonymized survey. Patients that participated in VC had a worse clinical condition, higher grade of malignancy, were more often diagnosed with glioblastoma and had a longer travel distance (all p < 0.01). VC were considered a fully adequate alternative to face-to-face consultations for almost all encounters that patients chose to participate in (>70%) except initial consultations. Most participants preferred to alternate between both modalities rather than participate in one alone but preferred VC over telephone consultation. VC made patients feel safer, and participants expressed interest in implementing other telemedicine modalities (e.g., apps) into neuro-oncology. VC are a promising addition to patient care in neuro-oncology. However, patients and encounters should be selected individually.

7.
Neurooncol Adv ; 5(1): vdad090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547266

RESUMEN

Background: Standard of care treatment options at glioblastoma relapse are still not well defined. Few studies indicate that the combination of trofosfamide plus etoposide may be feasible in pediatric glioblastoma patients. In this retrospective analysis, we determined tolerability and feasibility of combined trofosfamide plus etoposide treatment at disease recurrence of adult glioblastoma patients. Methods: We collected clinicopathological data from adult progressive glioblastoma patients treated with the combination of trofosfamide and etoposide for more than four weeks (one course). A cohort of patients receiving empiric treatment at the investigators' discretion balanced for tumor entity and canonical prognostic factors served as control. Results: A total of n = 22 progressive glioblastoma patients were eligible for this analysis. Median progression-free survival (3.1 vs 2.3 months, HR: 1.961, 95% CI: 0.9724-3.9560, P = .0274) and median overall survival (9.0 vs 5.7 months, HR: 4.687, 95% CI: 2.034-10.800, P = .0003) were significantly prolonged compared to the control cohort (n = 17). In a multivariable Cox regression analysis, treatment with trofosfamide plus etoposide emerged as a significant prognostic marker regarding progression-free and overall survival. We observed high-grade adverse events in n = 16/22 (73%) patients with hematotoxicity comprising the majority of adverse events (n = 15/16, 94%). Lymphopenia was by far the most commonly observed hematotoxic adverse event (n = 11/15, 73%). Conclusions: This study provides first indication that the combination of trofosfamide plus etoposide is safe in adult glioblastoma patients. The observed survival outcomes might suggest potential beneficial effects. Our data provide a reasonable rationale for follow-up of a larger cohort in a prospective trial.

8.
PLoS One ; 18(7): e0281487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37418389

RESUMEN

Telomerase reverse transcriptase (TERT) promoter mutations occur frequently in cancer, have been associated with increased TERT expression and cell proliferation, and could potentially influence therapeutic regimens for melanoma. As the role of TERT expression in malignant melanoma and the non-canonical functions of TERT remain understudied, we aimed to extend the current knowledge on the impact of TERT promoter mutations and expression alterations in tumor progression by analyzing several highly annotated melanoma cohorts. Using multivariate models, we found no consistent association for TERT promoter mutations or TERT expression with the survival rate in melanoma cohorts under immune checkpoint inhibition. However, the presence of CD4+ T cells increased with TERT expression and correlated with the expression of exhaustion markers. While the frequency of promoter mutations did not change with Breslow thickness, TERT expression was increased in metastases arising from thinner primaries. As single-cell RNA-sequencing (RNA-seq) showed that TERT expression was associated with genes involved in cell migration and dynamics of the extracellular matrix, this suggests a role of TERT during invasion and metastasis. Co-regulated genes found in several bulk tumors and single-cell RNA-seq cohorts also indicated non-canonical functions of TERT related to mitochondrial DNA stability and nuclear DNA repair. This pattern was also evident in glioblastoma and across other entities. Hence, our study adds to the role of TERT expression in cancer metastasis and potentially also immune resistance.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Telomerasa , Humanos , Linfocitos T CD4-Positivos/patología , Melanoma/genética , Melanoma/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Regiones Promotoras Genéticas , Mutación , Reparación del ADN/genética , Telomerasa/genética
9.
Chemistry ; 29(50): e202301260, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37334753

RESUMEN

Gold nanoparticles (AuNPs) are currently the most studied radiosensitizers in proton therapy (PT) applicable for the treatment of solid tumors, where they amplify production of reactive oxygen species (ROS). However, it is underexplored how this amplification is correlated with the AuNPs' surface chemistry. To clarify this issue, we fabricated ligand-free AuNPs of different mean diameters by laser ablation in liquids (LAL) and laser fragmentation in liquids (LFL) and irradiated them with clinically relevant proton fields by using water phantoms. ROS generation was monitored by the fluorescent dye 7-OH-coumarin. Our findings reveal an enhancement of ROS production driven by I) increased total particle surface area, II) utilization of ligand-free AuNPs avoiding sodium citrate as a radical quencher ligands, and III) a higher density of structural defects generated by LFL synthesis, indicated by surface charge density. Based on these findings it may be concluded that the surface chemistry is a major and underexplored contributor to ROS generation and sensitizing effects of AuNPs in PT. We further highlight the applicability of AuNPs in vitro in human medulloblastoma cells.


Asunto(s)
Nanopartículas del Metal , Terapia de Protones , Fármacos Sensibilizantes a Radiaciones , Humanos , Oro/química , Nanopartículas del Metal/química , Especies Reactivas de Oxígeno
10.
Neuro Oncol ; 25(12): 2150-2162, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37335907

RESUMEN

BACKGROUND: Glioblastomas are characterized by aggressive and infiltrative growth, and by striking heterogeneity. The aim of this study was to investigate whether tumor cell proliferation and invasion are interrelated, or rather distinct features of different cell populations. METHODS: Tumor cell invasion and proliferation were longitudinally determined in real-time using 3D in vivo 2-photon laser scanning microscopy over weeks. Glioblastoma cells expressed fluorescent markers that permitted the identification of their mitotic history or their cycling versus non-cycling cell state. RESULTS: Live reporter systems were established that allowed us to dynamically determine the invasive behavior, and previous or actual proliferation of distinct glioblastoma cells, in different tumor regions and disease stages over time. Particularly invasive tumor cells that migrated far away from the main tumor mass, when followed over weeks, had a history of marked proliferation and maintained their proliferative capacity during brain colonization. Infiltrating cells showed fewer connections to the multicellular tumor cell network, a typical feature of gliomas. Once tumor cells colonized a new brain region, their phenotype progressively transitioned into tumor microtube-rich, interconnected, slower-cycling glioblastoma cells. Analysis of resected human glioblastomas confirmed a higher proliferative potential of tumor cells from the invasion zone. CONCLUSIONS: The detection of glioblastoma cells that harbor both particularly high proliferative and invasive capabilities during brain tumor progression provides valuable insights into the interrelatedness of proliferation and migration-2 central traits of malignancy in glioma. This contributes to our understanding of how the brain is efficiently colonized in this disease.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Invasividad Neoplásica/genética , Neoplasias Encefálicas/patología , Proliferación Celular , Movimiento Celular , Línea Celular Tumoral
11.
Cancers (Basel) ; 15(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296942

RESUMEN

BACKGROUND: While prognosis of glioblastoma after trimodality treatment is well examined, recurrence pattern with respect to the delivered dose distribution is less well described. Therefore, here we examine the gain of additional margins around the resection cavity and gross-residual-tumor. METHODS: All recurrent glioblastomas initially treated with radiochemotherapy after neurosurgery were included. The percentage overlap of the recurrence with the gross tumor volume (GTV) expanded by varying margins (10 mm to 20 mm) and with the 95% and 90% isodose was measured. Competing-risks analysis was performed in dependence on recurrence pattern. RESULTS: Expanding the margins from 10 mm to 15 mm, to 20 mm, to the 95%- and 90% isodose of the delivered dose distribution with a median margin of 27 mm did moderately increase the proportion of relative in-field recurrence volume from 64% to 68%, 70%, 88% and 88% (p < 0.0001). Overall survival of patients with in-and out-field recurrence was similar (p = 0.7053). The only prognostic factor significantly associated with out-field recurrence was multifocality of recurrence (p = 0.0037). Cumulative incidences of in-field recurrences at 24 months were 60%, 22% and 11% for recurrences located within a 10 mm margin, outside a 10 mm margin but within the 95% isodose, or outside the 95% isodose (p < 0.0001). Survival from recurrence was improved after complete resection (p = 0.0069). Integrating these data into a concurrent-risk model shows that extending margins beyond 10 mm has only small effects on survival hardly detectable by clinical trials. CONCLUSIONS: Two-thirds of recurrences were observed within a 10 mm margin around the GTV. Smaller margins reduce normal brain radiation exposure allowing for more extensive salvage radiation therapy options in case of recurrence. Prospective trials using margins smaller than 20 mm around the GTV are warranted.

12.
Clin Cancer Res ; 29(2): 488-500, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36239995

RESUMEN

PURPOSE: Therapy resistance and fatal disease progression in glioblastoma are thought to result from the dynamics of intra-tumor heterogeneity. This study aimed at identifying and molecularly targeting tumor cells that can survive, adapt, and subclonally expand under primary therapy. EXPERIMENTAL DESIGN: To identify candidate markers and to experimentally access dynamics of subclonal progression in glioblastoma, we established a discovery cohort of paired vital cell samples obtained before and after primary therapy. We further used two independent validation cohorts of paired clinical tissues to test our findings. Follow-up preclinical treatment strategies were evaluated in patient-derived xenografts. RESULTS: We describe, in clinical samples, an archetype of rare ALDH1A1+ tumor cells that enrich and acquire AKT-mediated drug resistance in response to standard-of-care temozolomide (TMZ). Importantly, we observe that drug resistance of ALDH1A1+ cells is not intrinsic, but rather an adaptive mechanism emerging exclusively after TMZ treatment. In patient cells and xenograft models of disease, we recapitulate the enrichment of ALDH1A1+ cells under the influence of TMZ. We demonstrate that their subclonal progression is AKT-driven and can be interfered with by well-timed sequential rather than simultaneous antitumor combination strategy. CONCLUSIONS: Drug-resistant ALDH1A1+/pAKT+ subclones accumulate in patient tissues upon adaptation to TMZ therapy. These subclones may therefore represent a dynamic target in glioblastoma. Our study proposes the combination of TMZ and AKT inhibitors in a sequential treatment schedule as a rationale for future clinical investigation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Proteínas Proto-Oncogénicas c-akt , Resistencia a Antineoplásicos/genética , Temozolomida , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos Alquilantes/farmacología , Antineoplásicos Alquilantes/uso terapéutico
13.
J Cancer Res Clin Oncol ; 149(7): 3513-3526, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35953681

RESUMEN

PURPOSE: When brain cancer relapses, treatment options are scarce. The use of molecularly matched targeted therapies may provide a feasible and efficacious way to treat individual patients based on the molecular tumor profile. Since little information is available on this strategy in neuro-oncology, we retrospectively analyzed the clinical course of 41 patients who underwent advanced molecular testing at disease relapse. METHODS: We performed Sanger sequencing, targeted next generation sequencing, and immunohistochemistry for analysis of potential targets, including programmed death ligand 1, cyclin D1, phosphorylated mechanistic target of rapamycin, telomerase reverse transcriptase promoter mutation, cyclin-dependent kinase inhibitor 2A/B deletion, or BRAF-V600E mutation. In selected patients, whole exome sequencing was conducted. RESULTS: The investigation included 41 patients, of whom 32 had isocitrate dehydrogenase (IDH) wildtype glioblastoma. Molecular analysis revealed actionable targets in 31 of 41 tested patients and 18 patients were treated accordingly (matched therapy group). Twenty-three patients received molecularly unmatched empiric treatment (unmatched therapy group). In both groups, 16 patients were diagnosed with recurrent IDH wildtype glioblastoma. The number of severe adverse events was comparable between the therapy groups. Regarding the IDH wildtype glioblastoma patients, median progression-free survival (mPFS) and median overall survival (mOS) were longer in the matched therapy group (mPFS: 3.8 versus 2.0 months, p = 0.0057; mOS: 13.0 versus 4.3 months, p = 0.0357). CONCLUSION: These encouraging data provide a rationale for molecularly matched targeted therapy in glioma patients. For further validation, future study designs need to additionally consider the prevalence and persistence of actionable molecular alterations in patient tissue.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/patología , Estudios Retrospectivos , Medicina de Precisión , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Glioma/tratamiento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Mutación , Isocitrato Deshidrogenasa/genética
14.
Int J Cancer ; 152(2): 308-319, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36054558

RESUMEN

Detection of tumor progression in patients with glioblastoma remains a major challenge. Extracellular vesicles (EVs) are potential biomarkers and can be detected in the blood of patients with glioblastoma. In our study, we evaluated the potential of serum-derived EVs from glioblastoma patients to serve as biomarker for tumor progression. EVs from serum of glioblastoma patients and healthy volunteers were separated by size exclusion chromatography and ultracentrifugation. EV markers were defined by using a proximity-extension assay and bead-based flow cytometry. Tumor progression was defined according to modified RANO criteria. EVs from the serum of glioblastoma patients (n = 67) showed an upregulation of CD29, CD44, CD81, CD146, C1QA and histone H3 as compared to serum EVs from healthy volunteers (P value range: <.0001 to .08). For two independent cohorts of glioblastoma patients, we noted upregulation of C1QA, CD44 and histone H3 upon tumor progression, but not in patients with stable disease. In a multivariable logistic regression analysis, a combination of CD29, CD44, CD81, C1QA and histone H3 correlated with RANO-defined tumor progression with an AUC of 0.76. Measurement of CD29, CD44, CD81, C1QA and histone H3 in serum-derived EVs of glioblastoma patients, along with standard MRI assessment, has the potential to improve detection of true tumor progression and thus could be a useful biomarker for clinical decision making.


Asunto(s)
Vesículas Extracelulares , Glioblastoma , Humanos , Histonas , Proteínas Sanguíneas , Integrina beta1
15.
Neurooncol Adv ; 4(1): vdac137, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36284931

RESUMEN

Background: The randomized phase 3 CeTeG/NOA-09 trial assessed whether CCNU plus temozolomide was superior to temozolomide alone in newly diagnosed MGMT promoter methylated glioblastoma patients. Survival was significantly improved from 31.4 months (temozolomide) to 48.1 months (CCNU plus temozolomide). In view of this encouraging data, we assessed safety and efficacy of this regimen under real-life conditions. Methods: We retrospectively collected clinical and radiographic data from adult newly diagnosed MGMT promoter methylated IDH wildtype glioblastoma patients from five neuro-oncology centers in Germany. For inclusion in our analysis, treatment with CCNU and temozolomide had to be performed for at least six weeks (one course). Results: Seventy patients were included. Median progression-free survival was 14.4 months and median overall survival 33.8 months. Patients with TTFields treatment for at least 8 weeks and CCNU plus temozolomide (n = 22, 31%) had a prolonged progression-free survival compared to those with TTFields treatment for less than eight weeks (n = 48, 69%) (21.5 versus 11.2 months; P = .0105). In a multivariable Cox regression analysis, TTFields treatment for eight weeks or longer together with CCNU plus temozolomide and a Karnofsky performance score ≥ 90% were independent prognostic factors for progression-free and overall survival. Pseudoprogression occurred in n = 16 (33%) of investigated n = 49 (70%) patients. In n = 31 (44%) patients high-grade hematotoxicity was observed. Conclusions: The results from this multicentric trial indicate that-under real-life conditions-toxicity and survival estimates are comparable to the CeTeG/NOA-09 trial. TTFields therapy for at least eight weeks in combination with this regimen was independently associated with prolonged survival.

16.
Nat Commun ; 13(1): 4061, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831316

RESUMEN

Most lncRNAs display species-specific expression patterns suggesting that animal models of cancer may only incompletely recapitulate the regulatory crosstalk between lncRNAs and oncogenic pathways in humans. Among these pathways, Sonic Hedgehog (SHH) signaling is aberrantly activated in several human cancer entities. We unravel that aberrant expression of the primate-specific lncRNA HedgeHog Interacting Protein-AntiSense 1 (HHIP-AS1) is a hallmark of SHH-driven tumors including medulloblastoma and atypical teratoid/rhabdoid tumors. HHIP-AS1 is actively transcribed from a bidirectional promoter shared with SHH regulator HHIP. Knockdown of HHIP-AS1 induces mitotic spindle deregulation impairing tumorigenicity in vitro and in vivo. Mechanistically, HHIP-AS1 binds directly to the mRNA of cytoplasmic dynein 1 intermediate chain 2 (DYNC1I2) and attenuates its degradation by hsa-miR-425-5p. We uncover that neither HHIP-AS1 nor the corresponding regulatory element in DYNC1I2 are evolutionary conserved in mice. Taken together, we discover an lncRNA-mediated mechanism that enables the pro-mitotic effects of SHH pathway activation in human tumors.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , MicroARNs , ARN Largo no Codificante , Animales , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Proliferación Celular , Neoplasias Cerebelosas/genética , Dineínas/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Glicoproteínas de Membrana/metabolismo , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética
17.
Cancers (Basel) ; 14(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35326526

RESUMEN

Glioma and brain metastasis can be difficult to distinguish on conventional magnetic resonance imaging (MRI) due to the similarity of imaging features in specific clinical circumstances. Multiple studies have investigated the use of machine learning (ML) models for non-invasive differentiation of glioma from brain metastasis. Many of the studies report promising classification results, however, to date, none have been implemented into clinical practice. After a screening of 12,470 studies, we included 29 eligible studies in our systematic review. From each study, we aggregated data on model design, development, and best classifiers, as well as quality of reporting according to the TRIPOD statement. In a subset of eligible studies, we conducted a meta-analysis of the reported AUC. It was found that data predominantly originated from single-center institutions (n = 25/29) and only two studies performed external validation. The median TRIPOD adherence was 0.48, indicating insufficient quality of reporting among surveyed studies. Our findings illustrate that despite promising classification results, reliable model assessment is limited by poor reporting of study design and lack of algorithm validation and generalizability. Therefore, adherence to quality guidelines and validation on outside datasets is critical for the clinical translation of ML for the differentiation of glioma and brain metastasis.

18.
Nat Commun ; 13(1): 156, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013174

RESUMEN

Immune evasion is indispensable for cancer initiation and progression, although its underlying mechanisms in pancreatic ductal adenocarcinoma (PDAC) are not fully known. Here, we characterize the function of tumor-derived PGRN in promoting immune evasion in primary PDAC. Tumor- but not macrophage-derived PGRN is associated with poor overall survival in PDAC. Multiplex immunohistochemistry shows low MHC class I (MHCI) expression and lack of CD8+ T cell infiltration in PGRN-high tumors. Inhibition of PGRN abrogates autophagy-dependent MHCI degradation and restores MHCI expression on PDAC cells. Antibody-based blockade of PGRN in a PDAC mouse model remarkably decelerates tumor initiation and progression. Notably, tumors expressing LCMV-gp33 as a model antigen are sensitized to gp33-TCR transgenic T cell-mediated cytotoxicity upon PGRN blockade. Overall, our study shows a crucial function of tumor-derived PGRN in regulating immunogenicity of primary PDAC.


Asunto(s)
Adenocarcinoma/genética , Carcinoma Ductal Pancreático/genética , Antígenos de Histocompatibilidad Clase I/genética , Neoplasias Pancreáticas/genética , Progranulinas/genética , Escape del Tumor/genética , Adenocarcinoma/inmunología , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Animales , Anticuerpos Neutralizantes/farmacología , Antígenos Virales/genética , Antígenos Virales/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Citotoxicidad Inmunológica , Expresión Génica , Glicoproteínas/genética , Glicoproteínas/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Progranulinas/antagonistas & inhibidores , Progranulinas/inmunología , Proteolisis , Análisis de Supervivencia , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cancers (Basel) ; 13(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34359673

RESUMEN

Despite multimodal treatment, the prognosis of patients with glioblastoma (GBM) remains poor. Previous studies showed conflicting results on the effect of antiepileptic drugs (AED) on GBM survival. We investigated the associations of different AED with overall survival (OS) and progression-free survival (PFS) in a large institutional GBM cohort (n = 872) treated January 2006 and December 2018. In addition, we performed a meta-analysis of previously published studies, including this study, to summarize the evidence on the value of AED for GBM prognosis. Of all perioperatively administered AED, only the use of levetiracetam (LEV) was associated with longer OS (median: 12.8 vs. 8.77 months, p < 0.0001) and PFS (7 vs. 4.5 months, p = 0.001). In the multivariable analysis, LEV was independently associated with longer OS (aHR = 0.74, p = 0.017) and PFS (aHR = 0.68, p = 0.008). In the meta-analysis with 5614 patients from the present and seven previously published studies, outcome benefit for OS (HR = 0.83, p = 0.02) and PFS (HR = 0.77, p = 0.02) in GBM individuals with LEV was confirmed. Perioperative treatment with LEV might improve the prognosis of GBM patients. We recommend a prospective randomized controlled trial addressing the efficacy of LEV in GBM treatment.

20.
Nat Commun ; 12(1): 3895, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162860

RESUMEN

Brain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies.


Asunto(s)
Neoplasias Encefálicas/genética , Glioblastoma/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/genética , Células Cultivadas , Progresión de la Enfermedad , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Estimación de Kaplan-Meier , RNA-Seq/métodos , Transducción de Señal/genética , Análisis de la Célula Individual/métodos , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...